Bioinformatique M2: Lecture4 - part B

P. Derreumaux

[1l. From protein sequenceto 3D structure



The CASP experiment

« CASP= Critical Assessment of Structure Prediction

« Started in 1994, based on an idea from John Moult
(Moult, Pederson, Judson, Fidelis, Proteins, 23:2-5
(1995))

« First run in 1994; now runs reqularly every second year
(CASP7 was held last december)



The CASP experiment: how it works

1) Sequences of target proteins are made available to CASP participants

in June-July of a CASP year
- the structure of the target protein is know, but not yet released

in the PDB, or even accessible

2) CASP participants have between 2 weeks and 2 months over the
summer of a CASP year to generate up to 5 models for each of the
target they are interested in.

3) Model structures are assessed against experimental structure

4) CASP participants meet in December to discuss results



CASP

Three categories at CASP
- Homology (or comparative) modeling
- Fold recognition

- Ab initio or de Novo prediction

CASP dynamics:
- Real deadlines; pressure: positive, or negative?
- Competition?

- Influence on science ?

Venclovas, Zemla, Fidelis, Moult. Assessment of progress over the CASP experiments.
Proteins, 53:585-595 (2003)



EVOLVING IDEAS

 Used to be:

Secondary structure
Molecular Dynamics
Folding pathways
Fold recognition

 Now is:
Profiles

Multiple templates
Meta-servers
Fragments
Refinement
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Steady rise. Computer modelers have slowly but steadily improved the accuracy of the protein-folding models.



Prediction of protein 3D structure
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Homology Modeling: How it works
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\ o Find template
o Align target sequence
with template

Template: 1shg Framework o Generate model:
- add loops
- add sidechains

o Refine model

Model: 1bym



Template choice
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Homology modelling

Building the model

MODELLING THE WHOLE FOLD
1. Rigid-body assembly  ( CoHPoSER)

2. Spare-parts approach
3. Satisfaction of spatial restraints [ HoDE L [ ERD

MODELLING LOOPS

1. Database search of segments fitting fixed end-points
2. Molecular mechanics, molecular dynamics
3. Combination of 1+2

MODELLING SIDE CHAIN CONFORMATIONS

1.Use of rotamer libraries (backbone dependent)
2. Molecular mechanics optimization
3. Mean-field methods
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’3‘ Typical types of errors
I

d Sequence alignment errors.
 Loops which cannot be rebuilt.
 Inappropriate template selection.

 Subunit displacement.
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Fold recognition / Threading

Find a compatible fold for a given sequence ....

>Protein XY
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Number of protein folds that occurs in nature is limited. Fold Recognition
can be used to:
» Identify templates for comparative modeling

# Assign Protein Function
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Free modelling: Denovo or ab initio
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Rosetta: a folding simulation program

backbone torsion angles

£ accept or
Sﬁ.’ reject
g v
£
Choose a fragment
change

backbone angles

Tevaluate

i W

Convert to 3D

Fragment insertion Monte Carlo
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Olavco ebal. 3. Hol. Biel 272, 985-99¢ (1999)
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Current-Opinion in Structural Biology

Updated correlation between contact order. and the-logarithm of the
folding rate (log[k{]): Contact order is defined as.the average sequence
separation between residues that make contact.in:the native structure
divided by the sequence length:[13*]. Thus, a contact order of 10%
indicates that residue pairs that make contact in the three-dimenisional
structure are separated by 10% of the length of the protein on
average. Circles represent all-helical proteins, squdres represent sheet
proteins and diamonds represent proteins comprised of both helix and
sheet structures. Open points represent proteins characterized after
the publication of [13*°]. The best-fit line for.the original 12-protein
data set (filled points)-is shown.
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Zone 2 Conclusions

Approximate models, but never-the-less
valuable.

Alignment has improved, but still a way to go.

Further improvement probably requires an all
atom description and refinement.

‘Free modeling’ needed for non-template parts



T0281 ab initio prediction (1.59A)







Zone 3 Conclusions
A lot of progress over the CASPs.
A long way to go still.
Knowledge integration, multiple trajectories key.
Discrimination remains a bottleneck.

All atom description and refinement probably
necessary.



Tight fit. Adding data from nuclear magnetic resonance experiments
improves the accuracy of computer models of how proteins fold.



